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Abstract

Two analytical solutions for acoustic radiation from the radial structural modes of a thick annular disk
with free boundaries are described. The far-field modal sound pressure is calculated first by using the
Rayleigh integral formula and then obtained by treating the radiating surfaces as two cylindrical radiators.
Modal sound power, radiation efficiency and directivity predictions are confirmed by using a boundary
element code. Measured frequency responses also support the propsed theory.
r 2004 Elsevier Ltd. All rights reserved.
Introduction

Sound radiation from thin circular and annular disks has been examined by several
investigators [1–5], with focus on either flexural vibration modes or rigid body piston motions.
In such studies, sound radiation from the in-plane modes of a disk has been assumed to be
negligible compared to that from the out-of-plane modes. But, if the thickness (h) of a disk is
beyond the range of thin plate (shell) theory, radial vibration could generate sufficient sound,
given proper structural excitation. In this communication, we develop two analytical solutions for
acoustic radiation from the radial structural modes (with index q) of a thick annular disk that is
described in the cylindrical coordinates (r, j, z). Primary assumptions are as follows: (1) Disk is
see front matter r 2004 Elsevier Ltd. All rights reserved.
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free at the inner (r ¼ b) and outer (r ¼ a) edges and the associated scattering effect is negligible.
(2) Harmonic sound pressure amplitude (P) at the observation point ð~rpÞ in the free field is
generated only by the modal radial velocities on r ¼ b and r ¼ a edges, and the z-direction
surfaces do not contribute to P. (3) Vibration amplitudes of the radial surfaces due to radial
modes (at natural frequency oq) are uniform in the z-direction. The far-field modal sound pressure
is calculated first by using the Rayleigh integral formula and then obtained by treating the
radiating surfaces as two cylindrical radiators of length h. Predictions are confirmed by using a
commercial boundary element (BEM) code as well as by the frequency response measurements.
2. Sound radiation calculation methods

With reference to Fig. 1(a), Pð~rpÞ in the far and free fields due to a vibrating structure with
harmonic acceleration can be expressed by the Helmholtz integral equation [6].

Pð~rpÞ ¼ �

Z
SS

P
qg

qZ
þ r0

€Uð~rsÞg

� �
dSð r

*
sÞ. (1)

Here, g is the free space Green’s function, r0 is the medium density, €Uð~rsÞis the surface
acceleration at ~rs and Ss is the source surface. The first and second terms in Eq. (1) represent the
partial sound pressures generated at~rp by the surface pressure at~rs and surface acceleration at~rs;
respectively. If the field point is sufficiently far from the source ðkj~rpjb1Þ; one can express the
amplitude of acoustic particle velocity as P=r0c0; where k ¼ o=c0 is the acoustic wavenumber and
c0 is the medium sonic speed. Furthermore, since particle velocity is in-phase with the sound
pressure in the far field, the sound intensity (I) at the same location can be uniquely defined as
I ¼ P2=2r0c0: The sound power W from a vibrating structure can be found by integrating the far-
field sound intensity over the control surface Sv that surrounds the source. The acoustic radiation
resistance < is then obtained from W and spatially averaged mean square radial velocity _u2

� �
t;s

as
follows [6], where s is the acoustic radiation efficiency, As is the area of the radiator, and hit;s is a
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Fig. 1. Sound radiation from the radial vibration modes of a thick annular disk. (a) spherical radiation from unbaffled

disk; (b) radiation expressed in the spherical coordinate system; (c) radiation expressed in the cylindrical coordinate

system.
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temporal and spatial average operator:

< ¼
W

_u2
� �

t;s

¼ sr0c0As. (2)

2.1. Method I: Rayleigh integral approach

Without restrictions on the source configuration and frequency range, the surface pressure
distribution must be obtained through a numerical calculation. If the frequency range is, however,
restricted to the short-wavelength limit, the solution to the original Helmholtz integral equation
can be circumvented. With this assumption, Eq. (1) is simplified to the following expression that
can be solved without using a numerical method [6]; refer to Fig. 1(a) for the configuration.

Pð~rpÞ ¼
r0ck

4p
�

Z
SS

eik ~rp�~rsj j €Uð~rsÞ

~rp �~rs

�� �� ð1þ cos ZÞdSð~rsÞ. (3)

In our study, sound radiation from the qth radial mode of a thick annular disk is calculated by
assuming the unbaffled condition. Since we assume that the acceleration amplitude is constant in
the z-direction, normal accelerations on the outer (O) and inner (I) radial surfaces are expressed as

€UqOðjÞ ¼ €uqO

�� �� cosðqjÞ ¼ �o2
q uqO

�� �� cosðqjÞ;
€UqI ðjÞ ¼ €uqI

�� �� cosðqjÞ ¼ �o2
q uqI

�� �� cosðqjÞ: (4)

If the sound-generating surfaces are discretized into small elements dS of constant €uq;Pð~rpÞ

from the structure can be easily calculated using Eq. (3). For the annular disk case of Fig. 1(b),
dSð~rsÞ in Eq. (3) is expressed by dSð~rsÞ ¼ adjdz and dSð~rsÞ ¼ bdjdz for the outer and inner
radial surfaces, respectively. The total sound pressure P at~rp can be calculated by integrating the
sound pressure generated by each element over the entire source surface. In our study, numerical
integration is used to solve for the sound pressure distribution. The size of a dS element should be
selected according to the frequency of vibration. If the characteristic dimension of the element is
larger than p/k, P will have some errors and consequently acoustic radiation properties including
the directivity patterns will be distorted. In our study, observation positions are defined in the
spherical coordinates (R, f, y) by a group of points having equal angular increments (Df, Dy) on
a sphere that is centered at the disk center. With computed modal Pqð~rpÞ data, the modal
directivity function Dq(y, f) at oq is defined as follows, where R ¼ j~rpj is the radius of sphere on
which observation positions are defined:

PqðR; y;fÞ ¼
eikqR

R
Dqðy;fÞ. (5)

From the far-field approximation, the modal power Wq for the qth radial mode is then calculated
from modal pressures on a sphere surrounding the disk by using the following equation, where y
and f are the cone and azimuthal angles of the observation positions:

W q ¼ IsqS
� �

s
¼

1

2

Z 2p

0
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r0c0
R2 sin ydydf. (6)
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Modal acoustic radiation resistance <q is calculated using Eqs. (2) and (6), where

_uq

�� ��2D E
t;s
¼

1

4phða þ bÞ

Z h=2

�h=2

Z 2pðaþbÞ

0

_U
2

q dl dz. (7)

Based on Eq. (2), the modal radiation efficiency sq of an annular disk is determined as follows,
where 2phða þ bÞ is the total area of radiating surfaces.

sq ¼
<q

2r0c0phða þ bÞ
. (8)

2.2. Method II: cylindrical radiator

Outer and inner radial surfaces of the annular disk are treated as two separate cylindrical
radiators of identical length h that have uniform surface acceleration amplitudes in the thickness
direction (z in Fig. 1(c)). In our approach, the far-field sound pressure is calculated based on the
procedure proposed by Junger and Feit [6], along with the approximation for an unbaffled
cylindrical radiator in terms of a baffled one as suggested by Sandman [7]. Junger and Feit [6]
analyzed a cylindrical radiator of length h that has arbitrary acceleration amplitude distribution
Z(z) in the z-direction and a sinusoidal distribution (cos nj) in the circumferential direction j.
Surface acceleration on the radial surface is expressed in the cylindrical coordinate system
(excluding time dependency) as

€Uðz;jÞ ¼ €uj jZðzÞ cos nj. (9)

Application of the Fourier transform ½I� in the z-direction to the Helmholtz equation expressed in
cylindrical coordinates, followed by the inverse Fourier transform and the stationary phase
approximation, yields P due to the vibration of Eq. (9) as

PðR; y;fÞ ¼
r0e

ikR

pkR sin y
€uj j

~ZðkzÞð�iÞnþ1

H 0
nðkr sin yÞ

cos nf. (10)

Next, consider a thick annular disk case in which the modal surface accelerations of two radial
surfaces are given by Eq. (4). In this case, variation in the z-direction can be expressed via a square
pulse (rectangular) function. Accordingly, Z(z) can be expressed as Eq. (11) and the Fourier
transform of this equation is obtained by Eq. (12):

ZðzÞ ¼
1; zj joh=2;

0; zj j4h=2;

(
(11)

~ZðkzÞ ¼ Im½ZðzÞ� ¼ 2
sinðkzh=2Þ

kz

¼ h
sinðkzh=2Þ

kzh=2
¼ hSincðkzh=2Þ, (12)

where the Sinc function is defined as SincðxÞ ¼ sinðxÞ=x: Sound pressure PqO from the outer radial
surface and PqI from the inner radial surfaces are, respectively, generated by diverging and
converging waves, respectively. These are expressed by the Hankel functions (H) of the first and
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the second kinds respectively [8]. Therefore, using Eqs. (10) and (12), we get

PqOðR; y;fÞ ¼
r0e

ikqR

pkqR sin y
€uqO

�� ��h Sincðkq sin yh=2Þð�iÞqþ1

H10

q ðkqa sin yÞ
cos qf, (13a)

PqI ðR; y;fÞ ¼
r0e

ikqR

pkqR sin y
€uqI

�� ��h Sincðkq sin yh=2Þð�iÞqþ1

H20

q ðkqb sin yÞ
cos qf. (13b)

Also, the total modal sound pressure is given by the sum

PqðR; y;fÞ ¼ PqI ðR; y;fÞ þ PqOðR; y;fÞ. (14)

Other modal radiation properties such as Wq, <q and sq are calculated based on Pq(R, y, f) using
Eqs. (2), (6) and (8).
3. Conclusion

Modal radiation properties such as Dqðy;fÞ; W q; and sq of the sample annular disk (with
a ¼ 151:5mm; b ¼ 87:5mm; h ¼ 31:5mm) are obtained by using the two analytical methods of
Section 2. Further, the same radiation properties are calculated with an uncoupled, direct,
exterior, and unbaffled BEM analysis [9]. In the computational model, 4400 nodes and 6600
structural elements are used to describe the disk. Also, 6146 acoustic field points and 6144
elements are defined on the sphere surrounding the disk. The center of this sphere coincides with
the disk center. This BEM model is excited by the structural accelerations at r ¼ a and r ¼ b

surfaces that are numerically calculated from a forced vibration analysis. Results are illustrated in
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Fig. 2. Comparison of the directivity patterns for q ¼ 2 and 3 modes.
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Table 1

Comparison of modal acoustic power and radiation efficiency levels

Radiation property Mode q Computed using BEM Analytical methods

Rayleigh integral Cylindrical radiator model

Wq (dB re 1 pW) 2 66.5 66.8 66.0

3 67.5 67.2 67.5

sq (dB re 1) 2 �4.0 �2.3 �4.0

3 �1.0 �2.2 �2.0
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Fig. 3. Acoustic frequency response functions P/f(o), given force excitation in the radial direction. (a) y ¼ p=2 and

f ¼ 0; (b) y ¼ 0 and f ¼ 0: Key: 3 3 3, measured; - - -, computed using BEM; —, analytical calculation.
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Fig. 2 where Pqðy;fÞ results are compared with computed values for the q ¼ 2 and q ¼ 3 modes.
The W q and sq predictions for the first two radial modes (Table 1) compare well with the BEM
code and measured results. Since predictions are within 1 dB for W q and 2 dB for sq; one may
conclude that analytical solutions are sufficiently accurate in predicting W q and sq; though the
cylindrical radiator method appears to be better in predicting the modal radiation. When the
proposed theory for radial modes is combined with the analytical radiation solutions for out-of-
plane flexural modes [10] as well as their interactions, the total sound radiation from a thick
annular disk given a multidimensional force excitation can be formulated in an efficient manner
[11]. For instance, examine the results of Fig. 3 where the theoretical solutions of this paper are
used to predict the acoustic frequency response functions, P/f(o), given harmonic force excitation
in the radial direction; calculations are based on the multi-modal sound radiation concepts [11].
Analytical formulations agree well with computed and measured data.
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